
(SAFO)

SAFEONECHAIN
MASTER
PROTOCOL FILE
(MPF)

SAFO
Version: MPF-v1.0
Status: Canonical Master Document
Code Status: Code Freeze v1.0 (baseline)
Audit Status: External Audit Kickoff
Audience: Institutions, Regulators,
Auditors, Core Developers, Infrastructure
Operators

EXECUTIVE SUMMARY

We operate SafeOneChain (SAFO) as a permissioned Proof-of-Authority
blockchain with Byzantine Fault Tolerant finality, designed to serve
institutional, regulated and mission-critical environments.
SafeOneChain is engineered to close the gap between:
• cryptographic immutability
• deterministic settlement
• human accountability
• legal and regulatory oversight
Our system deliberately rejects anonymous participation, token-weighted
governance, autonomous enforcement, and probabilistic finality. Instead, we
combine deterministic cryptographic guarantees with explicit, auditable
human governance.
This document defines the full protocol, including:
• consensus mechanics
• finality proofs
• networking and RPC semantics
• governance and emergency controls
• evidence and enforcement pipelines
• reference client architecture
• audit scope and readiness
Nothing relevant to building, operating, auditing, or regulating SafeOneChain is
omitted.

SYSTEM INTENT,
SCOPE & NON-GOALS

SafeOneChain exists to provide a
distributed ledger with finality guarantees
comparable to classical settlement
systems, while preserving the benefits of
blockchain transparency, verifiability, and
tamper resistance.
Primary intents:
• deterministic finality (no probabilistic
settlement)
• clear assignment of responsibility
• controlled participation
• reproducible auditability
• compatibility with existing legal
frameworks

SYSTEM INTENT

SafeOneChain is not designed to:
• maximize censorship resistance at all
costs
• enable anonymous participation
• function as a public permissionless
monetary system
• autonomously enforce sanctions
• replace courts, regulators, or legal
processes
These are explicit design exclusions, not
limitations.

EXPLICIT NON-GOALS

SECTION ONE – SAFO
BLOCKCHAIN INFRASTRUCTURE
Blockchain Classification
• Type: Permissioned Distributed Ledger
• Consensus: Proof-of-Authority with BFT guarantees
• Execution Layer: EVM-compatible
• Validator Identity: Known, contractually bound entities
• Finality Model: Deterministic, single-step
There is:
• no mining
• no staking
• no token-weighted voting
• no anonymous block production

SECTION ONE – SAFO
BLOCKCHAIN INFRASTRUCTURE
Deterministic Finality
A block is considered final when:
At least ⌊2N/3⌋ + 1 validators have signed a valid pre-commit for the same
block hash at the same height.
Once final:
• the block cannot be reverted
• no competing chain is valid
• no later governance action can undo it
This rule is absolute and non-negotiable
Safety over Liveness
In the presence of:
• network partitions
• validator outages
• message delays
the protocol halts finalization rather than risking divergence.
Temporary loss of liveness is acceptable.Loss of safety is not.

SECTION TWO –
SAFO ECOSYSTEM
ARCHITECTURE

SafeOneChain is structured into explicit layers:
1. Consensus Layer – PoA-BFT state machine
2. Finality Proof Layer – cryptographic
commitment to consensus
3. Execution Layer – EVM transaction processing
4. Governance Layer – human-controlled authority
5. Evidence Layer – protocol violation proofs
6. Networking Layer – permissioned P2P
7. API Layer – finality-aware RPC
8. Operations Layer – node management &
observability
Each layer is independently auditable.

LAYERED ARCHITECTURE OVERVIEW

No layer can silently override another:
• execution cannot override consensus
• governance cannot rewrite finalized state
• emergency controls cannot bypass
finality
• products cannot influence protocol rules
This separation is enforced structurally, not
by convention.

SEPARATION OF CONCERNS

We distinguish:
• Protocol-native components
(consensus, governance, system
contracts)
• Protocol-adjacent services (staking
hubs, launchpads, analytics)
• Application-layer products (DEXs,
wallets, bots, off-ramps)
Only the first category is safety-
critical.

Section Two – SAFO Product Ecosystem (Status & Modularität)

Product integration:
• never modifies consensus rules
• never alters finality
• never introduces hidden authority
Products may be migrated to SAFO
only after independent audits.

All products interacting with SAFO are:
• modular
• replaceable
• isolated from protocol safety
The protocol remains safe even if all
products fail simultaneously.

Modular Product
Philosophy

Product Categories Integration Principle

• predictable
• governance-parameterized
• non-speculative
Volatility must never affect settlement
reliability.

 for (id, sig) in signatures {
 out.extend_from_slice(&id);
 out.extend_from_slice(&sig);
 }
 out
}

Section Three – Tokenomics (Protocol-Relevant)

The protocol is designed such that:
• removal of the token does not break
consensus
• token misuse cannot compromise safety
This is intentional.

 Any SAFO token:
• has no role in consensus
• has no governance power
• conveys no ownership or profit rights
Its functions are strictly operational:
• fee accounting
• access gating
• service metering

Token Function Economic Predictability Regulatory Position

Threat Mitigation

Validator
Collusion

≥2/3+1 quorum,
identity, evidence

Key Compromise
Rotation, pause,

audit trail

Double Signing Evidence pipeline

Network Partition Safety > liveness

Governance
Abuse

Quorum + on-
chain logs

Software Bugs
Code freeze +

audits

There is no autonomous enforcement.
All sanctions:
• require evidence
• require human review
• require governance approval
This aligns with due-process
principles.

Section Four – Risks, Limitations & Threat Model

• Permissioned systems trade openness
for accountability
• Governance introduces latency by
design
• Emergency controls exist but are
constrained
These are features, not flaws.

Threat Categories

No Automatic
Punishment

Explicit Disclosures

LEGAL FORMATTING &
HARMONIZATION (DOC
WRAPPER)
This master file is written to:
• avoid promissory language
• avoid investment claims
• preserve jurisdictional neutrality
All terms are defined consistently.Responsibility is
explicit.No “code-is-law” framing is used.
Understood. Below is Chunk 2 rewritten cleanly and fully in
English, with no content removed, no simplification, and no
audience filtering. This is a direct master-file continuation.

SafeOneChain operates under the
following assumptions:
• At most f < N/3 validators may be
faulty or malicious
• Validators are identified and
permissioned
• Network messages may be delayed,
duplicated, or dropped
These assumptions are explicit and
form the basis of the safety
guarantees.

SafeOneChain (SAFO) — Protocol Core Specification

For each block height H, exactly one
consensus instance is active.
The consensus process consists of
four sequential phases:
1. Propose
2. Prevote
3. Precommit
Commit (Finality)

SafeOneChain is a deterministic,
permissioned, Byzantine Fault Tolerant
consensus system
that:
• guarantees a single canonical state per
block height
• provides deterministic (non-
probabilistic) finality
• allows no implicit or hidden authority
paths
• records all safety-relevant decisions
on-chain
Any behavior not compliant with this
specification is invalid by definition.

Normative Definition Consensus Assumptions PoA-BFT Consensus
State Machine (Formal,

Code-Independent)

THIS SECTION DEFINES THE NORMATIVE CORE RULES OF THE SAFEONECHAIN PROTOCOL.EVERYTHING IN THIS SECTION IS BINDING FOR
IMPLEMENTATIONS, AUDITS, AND REGULATORY ASSESSMENTS.

• Validators independently verify:
o block structure
o transaction validity
o parent block finality
• Validators emit a prevote signature
for:
o exactly one block hash, or
o an explicit nil vote
Prevotes:
• are not final
• are preparatory signals only

SafeOneChain (SAFO) — Protocol Core Specification
• A validator may issue a precommit
only if:
o it has observed a valid proposal
o it has not already precommitted to a
different block at the same height
Precommit signatures are:
• cryptographically binding
eligible as evidence (double-sign
detection)

• A proposer is selected deterministically
from the validator set
• The proposer constructs a candidate
block including:
o valid transactions
o correct parent reference
o correct state root
• The proposal is broadcast to all
validators
A proposal does not imply finality and
does not bind validators.

Propose Phase Prevote Phase Precommit Phase

Commit Phase
(Deterministic Finality)

Once final:
• the block cannot be reverted
• no alternative history is valid
• all future blocks must build on it
This rule is absolute.

A block B at height H becomes final
when:
At least ⌊2N/3⌋ + 1 valid precommit
signaturesexist for the same block
hash B at height H

SAFETY INVARIANTS (NON-NEGOTIABLE)
The following invariants must never be violated:
1. Single Finality InvariantAt most one block per height can
be final.
2. No Reorganization InvariantFinalized blocks are
immutable.
3. No Implicit Authority InvariantNo single actor can
unilaterally create finality.
4. Evidence Preservation InvariantAll protocol violations
must be provable and storable on-chain.

DETERMINISM & INDEPENDENT
VERIFICATION
Any external party must be able to:
• verify finality offline
• using only:
o the block header
o the embedded commit proof
No trust in:
• node operators
• RPC providers
• product layers
is required.

The commit proof contains:
1. Version identifier
2. Consensus round information
3. Validator set commitment
4. Block hash being finalized
5. Validator precommit signatures
All signatures reference the block
header without the commit proof
itself, avoiding self-reference.

extraData CommitProof v1 — Semantic Definition
A commit proof is valid if and only if:
• all signatures are cryptographically
correct
• all signers are authorized validators
• no validator identity appears more than
once
• the number of valid signatures ≥ ⌊2N/3⌋ + 1
• the validator set was valid at that block
height
Failure of any condition means no finality.

The commit proof exists to:
• embed finality directly into the block
• enable circular-dependency-free
verification
• provide stand-alone cryptographic
evidence

Purpose Logical Components Validity Conditions

Security Implications

The commit proof:
• replaces confirmation-count
heuristics
• eliminates probabilistic settlement
• enables legally defensible
verification

This section defines what the commit proof contains. The exact byte-level encoding is specified later.

• Validator NodesParticipate in
consensus messaging.
• Full NodesReplicate state and serve
RPC; no voting.
• Auditor NodesRead-only verification;
no transaction propagation.

Networking & P2P Specification

A connection is accepted only if:
• peer identity is cryptographically
authenticated
• peer role is explicitly authorized
• policy constraints are satisfied

SafeOneChain operates a permissioned
peer-to-peer network.
There is:
• no public peer discovery
• no anonymous participation
• no unauthorized gossip

Networking Model Node Roles Peer Admission Rules

Message Classes

Message types are strictly
separated:
• consensus messages
• block/state synchronization
• optional RPC relay
Nodes must never send messages
outside their authorized class.

• current and historical validator sets
• governance actions
• evidence records
• emergency events
All data is immutable and complete.

RPC Specification (Institutional & Developer Relevant)

Supervisory bodies can use RPC to:
• verify finality
• reconstruct governance timelines
analyze incidents independently

All RPC responses must respect finality:
• latest always means finalized
• non-final blocks must never be
presented as canonical truth

Finality-Aware Semantics Governance & Evidence
Access

Regulatory & Institutional
Use

extraData is composed as follows:

| MAGIC | VERSION | ROUND |
VALSET_HASH | SIG_COUNT |
SIGNATURES |
All fields are big-endian unless
explicitly stated.

extraData CommitProof v1 — Raw Binary Byte Encoding (Non-RLP)

 MAGIC (4 bytes)

Constant identifier: 0x5341464F (“SAFO”)

Purpose:

Prevents misinterpretation

Enables fast rejection of malformed blocks

The encoding is designed to be:

Deterministic

Compact

Non-recursive

Not RLP (explicitly avoided to reduce
ambiguity and attack surface)

Fuzz-testable at byte level

Independently verifiable without node
state

Design Constraints High-Level Layout Field Definitions

This section defines the exact byte-level encoding of the CommitProof embedded in the block header extraData field.
This encoding is normative. Any deviation invalidates finality.

Unsigned integer

Identifies the consensus round at
which finality was achieved

Required for double-sign evidence
reconstruction

extraData CommitProof v1 — Raw Binary Byte Encoding (Non-RLP)

 Hash of the active validator set at block
height H

Computed deterministically from ordered
validator identities

Ensures signatures are validated against
the correct authority set

Current value: 0x01

Allows future evolution without
ambiguity

VERSION (1 byte) ROUND (4 bytes) VALSET_HASH (32 bytes)

This section defines the exact byte-level encoding of the CommitProof embedded in the block header extraData field.
This encoding is normative. Any deviation invalidates finality.

Each signature entry:
| VALIDATOR_ID (20 bytes) | SIG (65
bytes) |
VALIDATOR_ID is the canonical
address
SIG is a secp256k1 signature
Low-s enforcement is mandatory
Duplicate VALIDATOR_ID entries are
forbidden

extraData CommitProof v1 — Raw Binary Byte Encoding (Non-RLP)

 Each validator signs:
HASH(
 Header_without_extradata ||
 ROUND ||
 VALSET_HASH
)
This prevents:
Self-referential signing
Replay across rounds or validator sets

Unsigned integer

Number of signatures included

MUST be ≥ ⌊2N/3⌋ + 1

SIG_COUNT (2 bytes) SIGNATURES (variable) Signed Message
Definition

This section defines the exact byte-level encoding of the CommitProof embedded in the block header extraData field.
This encoding is normative. Any deviation invalidates finality.

Validation Algorithm
(Normative)

A node MUST:
1. Verify MAGIC and VERSION
2. Recompute
header_without_extradata
3. Recompute VALSET_HASH

4. Verify all signatures
5. Reject duplicates
6. Enforce quorum threshold
If any step fails → block is non-final

Each evidence item contains:

Validator identity
Block height
Conflicting signed messages
Corresponding signatures

Evidence must be verifiable without
node state.

Evidence Pipeline v1

 1. Detection (by any node or auditor)

2. Submission (on-chain)

3. Verification (deterministic)

4. Storage (immutable)

5. Governance review (human-controlled)

Currently supported:

Double-Sign Evidence

Same validator

Same height

Different block hashes

Evidence Types (v1) Evidence Structure
(Logical)

Evidence Lifecycle

The evidence pipeline provides objective, cryptographic proof of protocol violations.

No Automatic
Enforcement

Evidence does not trigger automatic punishment.
This is intentional to preserve:
Legal proportionality
Due process
Governance accountability

Responsibilities:
Proposal creation
Quorum verification
Execution gating

Properties:
No single-admin path
All actions emit events
Quorum rules immutable post-freeze

 System Contracts v1 (Solidity — Conceptual Specification)

 Manages:

Validator admission

Pause / removal

Key rotation

State transitions are explicit and on-chain.

GovernanceController

ValidatorRegistry

EvidenceRegistry

EmergencyControl

Contract Set GovernanceController ValidatorRegistry

System contracts implement governance-critical logic.

EVIDENCEREGISTRY

Stores:

Validated evidence items

Submission metadata

Verification status

No evidence can be deleted.

Allows:
Scoped intervention
Time-limited actions
Explicitly forbids:
Global shutdown
State rewrites
Finality bypass

 EMERGENCYCONTROL

RUST ↔ SOLIDITY SYSTEM-
CONTRACT BINDINGS
Properties:
No dynamic ABI calls
No reflective execution
Strict interface versioning

Bindings ensure:
Deterministic calls
Auditability
Compile-time safety

The client guarantees:

Exact adherence to protocol rules

Deterministic behavior

Reproducible builds

Audit-friendly structure

Reference Client Skeleton (Rust / rusk)

Rusk/
 ├── consensus/
 ├── execution/
 ├── networking/
 ├── governance/
 ├── evidence/
 ├── rpc/
 ├── storage/
 └── node/

The reference client is implemented in
Rust, organized into explicit modules.

Consensus
Execution
Networking
Governance
Evidence
Storage
Rpc

Each module has:
Deterministic interfaces
Explicit responsibilities
No hidden cross-module authority

Architectural Overview rusk Skeleton Layout
(Conceptual)

Reference Client
Guarantees

AUDITOR READ-
ONLY NODE GUIDE
Auditors may operate read-only nodes with the following
properties:

No signing keys
No transaction submission
Full verification of finality proofs
Independent evidence validation

Auditor nodes can reconstruct:
Full chain history
Governance timelines
Violation evidence
Without trust in operators.

Continuing linearly, exhaustively, and without omission.

SAFEONECHAIN (SAFO)
MASTER PROTOCOL FILE (MPF-v1.0)

Chunk 4 — Harness, RPC Catalog, Audit Artifacts,
Regulatory Annexes

Determinism is enforced by:

Fixed genesis state

Fixed validator identities and ordering

Fixed proposer rotation

Fixed block timing windows

Deterministic transaction ordering

Given identical inputs, the harness
must always produce identical
outputs.

Local Multi-Validator Harness

The canonical harness topology is:

4 validator nodes (minimum BFT
quorum set)
1 full node
1 auditor read-only node

This topology allows:
Quorum testing (≥3 of 4)
Equivocation detection
Partition simulation

The harness enables:

Deterministic reproduction of
consensus behavior

Simulation of validator failures and
adversarial conditions

Verification of finality, evidence
generation, and governance flow

Auditor-grade replay without access to
production infrastructure

The harness is not a test convenience; it
is a protocol requirement.

 Purpose Topology Deterministic Execution

(Deterministic, Reproducible, Audit-Grade)
This harness exists to ensure that every safety-critical claim of the protocol can be reproduced locally, deterministically, and without trust.

FAILURE SCENARIOS
COVERED
The harness explicitly supports simulation of:

Proposer failure

Validator downtime

Double-signing

Network partition

Delayed messages

Governance intervention

Each scenario produces verifiable on-chain artifacts.

SAFO_* RPC METHOD
CATALOG
(Normative Semantics)

This section defines protocol-specific RPC methods.
All semantics here are binding.

General RPC Rules

All reads are finality-aware

No RPC method may expose non-final state as
canonical

All governance and evidence data must be retrievable

CORE METHODS

Semantics:

MUST return proof only if block is final

MUST reject non-final heights

SAFO_GETFINALITYPROOF

Returns validator set for a given block
height.

Semantics:

MUST reflect historical state

MUST be immutable

SAFO_GETVALIDATORSET

Returns submitted evidence objects.

Semantics:

MUST return raw evidence payloads

MUST include verification status

Safo_getGovernanceActions

Institutions and regulators may use
RPC to:

Reconstruct finality timelines

Audit validator behavior

Review governance decisions

Verify emergency interventions

RPC is designed to be sufficient for
oversight without node control.

Returns governance actions within a
height or time range.

Semantics:

MUST include proposer, quorum result,
timestamps

Safo_getEvidence Institutional RPC UsageSafo_getGovernanceActions

Upgrades are governance-approved

Rolling upgrades are supported

Consensus compatibility is mandatory

No node may unilaterally upgrade
consensus logic.

Node Operations Handbook

Validators must:

Snapshot state regularly

Store backups offline

Test recovery quarterly

Recovery procedures must not
compromise finality.

Validators must maintain:

High-availability infrastructure

Secure key storage (HSM or remote
signer)

Continuous monitoring

Failure to meet operational standards is
a governance matter.

Upgrade & Maintenance Backup & RecoveryValidator Operations

(Extended, Normative)

Application-layer products

Wallets and off-ramps

Bridges and cross-chain systems

Front-end interfaces

External Audit Scope

Auditors must:

Verify safety invariants

Attempt must-fail scenarios

Reproduce harness tests

Validate offline finality proofs

Checklist-only audits are not
acceptable.

PoA-BFT consensus logic

CommitProof verification

Governance & emergency controls

Evidence pipeline

Permissioned networking

Finality-aware RPC semantics

Out-of-Scope
Components

Audit Methodology
Requirements

In-Scope Components

(Statement of Work — SOW)
This section defines the binding scope for external security audits.

SAFEONECHAIN – EXTERNAL
AUDIT READINESS MAP
The readiness map provides a traceability matrix:

Protocol claim → code location → test → on-chain evidence

Every safety claim in this document must be traceable.

SAFEONECHAIN (SAFO) –
EXTERNAL SECURITY AUDIT RFP
The RFP formalizes:

Scope

Deliverables

Severity definitions

Timelines

Disclosure rules

The RFP is designed for protocol-level auditors, not
marketing audits.

REGULATORY BRIEFING
The regulatory briefing explains:

Why SafeOneChain is not a public blockchain

Why it is not an autonomous system

How finality and governance align with institutional controls

How oversight access is provided

It is suitable for supervisory authorities and public bodies.

REGULATORY Q&A (ANNEX)
The Q&A provides concise answers on:

Consensus

Finality

Governance authority

Emergency powers

Token classification

Audit access

The annex may be distributed independently.

CODE FREEZE V1.0
At Code Freeze v1.0:

Consensus rules are immutable

CommitProof v1 is fixed

Governance contracts are fixed

Evidence pipeline v1 is fixed

Any change requires:

Protocol version increment

Renewed external audit

Explicit governance approval

AUDIT KICKOFF
DECLARATION
With this Master Protocol File:

SafeOneChain enters formal external audit

This document is the canonical baseline

All audits reference this version

FINAL CANONICAL
STATEMENT
➢ SafeOneChain defines a blockchain protocol where
cryptographic finality, human governance, and legal
accountability coexist without contradiction.

END OF MASTER PROTOCOL FILE (MPF-v1.0)

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
SafeOneChain (SAFO)
Document Status: Annex to MPF-v1.0 (Canonical)
Scope: Regulatory, Institutional, Audit, Oversight
Binding Reference: SafeOneChain (SAFO) Master Protocol
File v1.0

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
A.1 System Classification & Scope

Q1: What type of system is SafeOneChain?
A:
SafeOneChain is a permissioned Proof-of-Authority
blockchain with Byzantine Fault Tolerant (BFT)
deterministic finality.
It is designed as a controlled distributed ledger
infrastructure, not as a public permissionless blockchain.

Q2: Is SafeOneChain a public blockchain?
A:
No. Participation in consensus is restricted to identified,
permissioned validator entities.
There is no anonymous validator participation or open
mining.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q3: Is SafeOneChain an autonomous or self-governing
system?

A:
No. SafeOneChain explicitly rejects autonomous
governance.
All authority is exercised through human, quorum-based
governance decisions recorded on-chain.

Q4: Is SafeOneChain a financial product or investment
vehicle?
A:
No. SafeOneChain is technical infrastructure.
It does not represent a collective investment scheme,
security, or yield-bearing product.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q5: How is consensus achieved?

A:
Consensus is achieved through a PoA-BFT state machine
with four phases: propose, prevote, precommit, commit.
Finality is reached when ≥ two-thirds plus one (⌊2N/3⌋ + 1)
validators precommit the same block.

Q6: When is a transaction considered final?

A:
A transaction is final once it is included in a block that has
reached deterministic finality via the quorum rule.
There are no confirmations or probabilistic waiting periods.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q6: When is a transaction considered final?

A:
A transaction is final once it is included in a block that has
reached deterministic finality via the quorum rule.
There are no confirmations or probabilistic waiting periods.

Q7: Can finalized transactions be reversed or reorganized?

A:
No. Once a block is finalized, it cannot be reorganized,
reverted, or modified, regardless of governance actions.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q8: What happens during network partitions or validator outages?

A:
The protocol prioritizes safety over liveness.
If quorum cannot be achieved safely, finalization halts until safe conditions are
restored.

A.3 Governance & Authority

Q9: Who controls SafeOneChain?

A:
SafeOneChain is controlled through on-chain governance, requiring multi-party
quorum approval.
There is no single administrator, master key, or hidden authority.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
A:
Governance may:

Add, pause, or remove validators

Rotate validator keys

Authorize scoped emergency actions

Approve protocol upgrades

All decisions are on-chain, time-stamped, and auditable.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q11: Can governance override finalized blocks?

A:
No. Governance cannot alter finalized state under any circumstances.

A.4 Emergency Controls

Q12: Does SafeOneChain have a global kill switch?

A:
No. There is no global shutdown mechanism.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q13: What emergency actions are possible?

A:
Only scoped, time-limited interventions, such as:

Temporarily pausing a validator

Restricting a specific system component

All emergency actions:

Require governance approval

Are recorded on-chain

Expire automatically

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q14: Can emergency actions affect transaction history?

A:
No. Emergency controls cannot rewrite, delete, or alter finalized transactions.

A.5 Evidence, Enforcement & Due Process

Q15: How are protocol violations handled?

A:
Violations (e.g., validator double-signing) are handled via an evidence pipeline
that produces cryptographic, reproducible proof stored on-chain.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q16: Are penalties enforced automatically by code?

A:
No. There is no automatic slashing or enforcement.
All sanctions require human governance review and approval.

Q17: Why is enforcement not automated?

A:
To preserve:
Legal proportionality
Due process
Accountability
This design avoids autonomous punishment systems incompatible with
regulated environments.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q18: Does AI control any part of the protocol?

A:
No. AI has no execution authority, cannot influence consensus, and cannot
trigger governance actions.

Q19: How may AI be used?

A:
Only for non-binding analytical support, such as anomaly detection or
operational insights.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
A.7 Token & Economic Model

Q20: What role does the SAFO token play?

A:
If used, the token serves purely operational purposes:

Fee accounting
Access control
Service metering
It has no role in consensus or governance.

Q21: Does the token represent ownership or profit rights?

A:
No. The token conveys no ownership, voting, or yield rights.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q22: Can the protocol function without the token?

A:
Yes. Consensus and finality are independent of any token.

Q23: Can regulators or auditors independently verify the system?

A:
Yes. SafeOneChain supports read-only auditor nodes that can independently
verify:

Finality proofs
Validator behavior
Governance actions
Evidence records

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
Q24: Is trust in operators required for verification?

A:
No. Finality and governance are cryptographically verifiable offline, without
trusting node operators or RPC providers.

Q25: Are audit artifacts formally defined?

A:
Yes. The Master Protocol File includes:

An Audit Readiness Map

A formal Audit Scope (SOW)

An External Audit RFP

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
A.9 Legal & Accountability Considerations

Q26: Are validators legally identifiable?

A:
Yes. Validators are identified legal entities operating under contractual
obligations.

A:
No. SafeOneChain explicitly rejects the “code is law” doctrine.
Legal responsibility and governance accountability remain intact.

ANNEX A — REGULATORY &
INSTITUTIONAL Q&A
A.10 Summary Statement for Authorities

➢ SafeOneChain is a controlled, auditable, and accountable distributed ledger
infrastructure that combines deterministic cryptographic finality with explicit
human governance and legal responsibility.

End of Annex A — Regulatory & Institutional Q&A

CONTACT US

X

Telegram

Medium

safeonechain.com

https://twitter.com/SafeOne_Chain
https://t.me/SafeOne_Chain_Global
https://medium.com/@safeonechain
https://safeonechain.com/

