
(SAFO)

SAFEONECHAIN
DEVELOPER
PROTOCOL
SPECIFICATION
(DPS)

SAFO
Version: DPS-v1.0
Status: Canonical Implementation
Reference
Code Status: Code Freeze v1.0
Audit Status: External Audit Kickoff
Audience: Core Developers, Protocol
Engineers, Auditors, Node Operators

PURPOSE OF THIS DOCUMENT (DEVELOPER)
This document defines how SafeOneChain is implemented.
If there is a conflict between:
• interpretation
• blog posts
• marketing material
• secondary summaries
this document wins.
Any implementation claiming SAFO compatibility must
conform exactly to this specification.

REPOSITORY LAYOUT
(NORMATIVE)
rusk/
 ├── consensus/ # PoA-BFT state machine
 ├── extradata/ # CommitProof encoding/decoding
 ├── execution/ # EVM integration
 ├── networking/ # Permissioned P2P
 ├── rpc/ # JSON-RPC (eth_* + safo_*)
 ├── governance/ # System contract bindings
 ├── evidence/ # Evidence detection & verification
 ├── storage/ # Block & state persistence
 ├── node/ # Node lifecycle
 ├── config/ # Genesis & validator config
 └── bin/ # Node binary
No module may bypass another module’s authority.

CORE PROTOCOL
CONSTANTS (FROZEN)
// consensus/constants.rs

pub const COMMIT_QUORUM_NUMERATOR: u64 = 2;
pub const COMMIT_QUORUM_DENOMINATOR: u64 = 3;
pub const EXTRA_DATA_MAGIC: [u8; 4] = *b"SAFO";
pub const EXTRA_DATA_VERSION_V1: u8 = 0x01;
pub const MAX_VALIDATORS: usize = 100;
pub const SIGNATURE_SIZE: usize = 65;
pub const VALIDATOR_ID_SIZE: usize = 20;
These constants are protocol-critical.Changing them
requires a new protocol version and re-audit.

// consensus/context.rs
pub struct ConsensusContext {
 pub height: u64,
 pub round: u32,
 pub step: ConsensusStep,
 pub proposer: ValidatorId,
 pub votes: VoteSet,
}

PoA-BFT Consensus — Minimal Implementable State Machine

// consensus/vote.rs
pub struct Vote {
 pub height: u64,
 pub round: u32,
 pub block_hash: Option<Hash>,
 pub validator: ValidatorId,
 pub signature: Signature,
}
A validator may never emit two
Precommit votes for the same height.

// consensus/state.rs
pub enum ConsensusStep {
 Propose,
 Prevote,
 Precommit,
 Commit,
}
Only one state may be active per block
height.

State Definitions Consensus Context Vote Structure

Commit Condition
(Normative)

// consensus/quorum.rs
pub fn has_commit_quorum(
 votes: &Vec<Vote>,
 validator_count: usize,
) -> bool {
 votes.len() >= (validator_count * 2 / 3) + 1
}
If this returns true, the block must be finalized.

// extradata/encode.rs
pub fn encode_commit_proof(
 round: u32,
 valset_hash: [u8; 32],
 signatures: Vec<(ValidatorId,
Signature)>
) -> Vec<u8> {
 let mut out = Vec::new();
out.extend_from_slice(&EXTRA_DATA
_MAGIC);
 out.push(EXTRA_DATA_VERSION_V1);
out.extend_from_slice(&round.to_be_b
ytes());
 out.extend_from_slice(&valset_hash);
 out.extend_from_slice(&
(signatures.len() as u16).to_be_bytes());

extraData CommitProof v1 — Encoding & Verification

// extradata/verify.rs
pub fn verify_commit_proof(
 header_hash_no_extradata: Hash,
 proof: CommitProof,
 validator_set: &ValidatorSet
) -> Result<(), Error> {
 ensure!(proof.signatures.len() >=
quorum(validator_set.len()));
 for (id, sig) in proof.signatures {
 let pubkey =
validator_set.get_pubkey(&id)?;
verify_secp256k1(header_hash_no_extrad
ata, sig, pubkey)?;
 }
 Ok(())
}

0..4	MAGIC = "SAFO"
4	VERSION = 0x01
5..9	ROUND (u32, BE)
9..41	VALSET_HASH (32 bytes)
41..43	SIG_COUNT (u16, BE)
43..*	SIGNATURE ENTRIES
Each signature entry:	
VALIDATOR_ID (20 bytes)	
SIGNATURE (65 bytes) |

Raw Binary Layout (Exact) Encoding Verification

EVIDENCE
PIPELINE V1
(DOUBLE-SIGN)

// evidence/types.rs

pub struct DoubleSignEvidence {
 pub validator: ValidatorId,
 pub height: u64,
 pub vote_a: Vote,
 pub vote_b: Vote,
}

EVIDENCE STRUCTURE
// evidence/detect.rs

pub fn detect_double_sign(votes: &[Vote])
-> Vec<DoubleSignEvidence> {
 // group by validator + height
}
Evidence is never auto-enforced.

THE REFERENCE CLIENT IS:

SYSTEM
CONTRACTS V1
(SOLIDITY)

contract ValidatorRegistry {
 event ValidatorAdded(address validator);
 event ValidatorPaused(address validator);
 event ValidatorRemoved(address validator);
 mapping(address => bool) public active;
 function addValidator(address v) external
onlyGovernance {
 active[v] = true;
 emit ValidatorAdded(v);
 }
}

VALIDATORREGISTRY.SOL

contract GovernanceController {
 uint256 public quorum;
 function approve(bytes32 action) external
onlyValidator {
 // quorum tracking
 }
}
No contract has a single-admin escape
hatch.

GOVERNANCECONTROLLER.SOL

RUST ↔ SOLIDITY BINDINGS
// governance/bindings.rs

abigen!(
 ValidatorRegistry,
 "abi/ValidatorRegistry.json"
);
Bindings are:
• static
• versioned
• compile-time checked

LOCAL MULTI-VALIDATOR
HARNESS (DOCKER-COMPOSE)
version: "3.9"
services:
 v1:
 image: safo/rusk
 environment:
 - VALIDATOR_ID=1
 v2:
 image: safo/rusk
 environment:
 - VALIDATOR_ID=2
The harness must reproduce:
• quorum finality
• proposer failure
double-sign evidence

SAFO_* RPC METHODS
(EXAMPLES)
safo_getFinalityProof
{
 "jsonrpc": "2.0",
 "method": "safo_getFinalityProof",
 "params": ["0xBLOCKHASH"],
 "id": 1
}
Response includes:
• raw commit proof bytes
• validator set hash
verification status

NODE OPERATIONS
(DEVELOPER)
• validators must use remote signers
• keys are rotatable
• upgrades require governance approval

NETWORKING STACK
OVERVIEW
SafeOneChain networking is permissioned, identity-bound,
and role-aware.

There is no peer discovery.
All peers are explicitly configured or admitted via
governance.

NODE IDENTITY
Each node has:
Pub struct NodeIdentity {
 Pub node_id: [u8; 32],
 Pub validator_id: Option<ValidatorId>,
 Pub role: NodeRole,
}
Pub enum NodeRole {
 Validator,
 FullNode,
 Auditor,
}
Validator → consensus + gossip
FullNode → sync + RPC
Auditor → read-only verification

HANDSHAKE PROTOCOL
Handshake must complete before any data exchange.

Handshake steps:

1. Node ID exchange

2. Role declaration

3. Signature challenge

4. Validator authorization check (if applicable)

5. Connection acceptance or rejection

MESSAGE
AUTHORIZATION
MATRIX

Message
Type Validator Full Node Auditor

Propose ✔ ✖ ✖

Prevote ✔ ✖ ✖

Precommit ✔ ✖ ✖

Block Sync ✔ ✔ ✔

Evidence ✔ ✔ ✔

RPC Relay ✖ ✔ ✔

SENDING UNAUTHORIZED MESSAGES IS A PROTOCOL VIOLATION.

NETWORK SECURITY
RULES
All messages signed

All messages validated before processing

Rate limits per peer

Malformed messages → immediate disconnect

Supported subset:

Eth_blockNumber
Eth_getBlockByHash
Eth_getBlockByNumber
Eth_getTransactionByHash
Eth_getBalance
Eth_call

Constraint:
All calls resolve against finalized state
only.

RPC Specification (Full, Normative)

Safo_getFinalityProof

Returns raw commit proof.
{
 “method”: “safo_getFinalityProof”,
 “params”: [“0xBLOCKHASH”]
}
Response:
{
 “finalized”: true,
 “commitProof”: “0xRAWBYTES”,
 “validatorSetHash”: “0x…”
}

Latest always means finalized

No RPC may expose non-final state as
canonical

Errors are explicit; silence is forbidden

Global Rules Ethereum-Compatible
RPC (eth_*)

SAFO-Specific RPC
(safo_*)

THIS SECTION DEFINES ALL RPC SEMANTICS. RPC IS FINALITY-AWARE BY DESIGN.

Returns full governance history slice.

Safo_getEvidence

Returns submitted evidence objects
including verification result.

RPC Specification (Full, Normative)

{
 “code”: -32001,
 “message”: “BLOCK_NOT_FINAL”
}

Errors are machine-processable.

{
 “method”: “safo_getValidatorSet”,
 “params”: [123456]
}

Returns:

Ordered validator list

Public keys

Activation status

Safo_getValidatorSet Safo_getGovernance
Actions

RPC Error Semantics

THIS SECTION DEFINES ALL RPC SEMANTICS. RPC IS FINALITY-AWARE BY DESIGN.

Deployment may be:

Open

Permissioned

This is a governance parameter, not a
protocol constant.

EVM Execution Layer — Decision & Integration

Pub trait ExecutionEngine {
 Fn execute_block(
 &self,
 Block: &Block,
 State: &mut State
) -> ExecutionResult;
}
Consensus:
Validates signatures

Finalizes blocks
Execution:
Processes transactions

Produces state root

SafeOneChain integrates an EVM
execution engine as a pure execution
layer.

Properties:

Execution cannot influence consensus

Execution failures cannot affect finality

Gas accounting is deterministic

Execution Model Integration Boundary Contract Deployment
Policy

An auditor node can:

Verify commit proofs offline

Detect equivocation

Validate governance decisions

Without trusting operators.

Auditor Read-Only Node (Developer Guide)

[node]
Role = “auditor”
Rpc_enabled = true
P2p_enabled = true
Signing_disabled = true

Auditor nodes enable:

Independent finality verification

Governance timeline reconstruction

Evidence validation

Auditor nodes never sign and never
broadcast transactions.

 Purpose Configuration Auditor Guarantees

Auditors must confirm failure for:

Forged commit proofs

Duplicate validator signatures

Governance actions without quorum

Non-final blocks returned as latest

Passing these tests is mandatory.

External Audit Scope — Statement of Work (SOW)

Written report

Reproducible PoCs

Severity classification

Explicit yes/no on finality bypass

Auditors must assess:

PoA-BFT safety invariants

CommitProof correctness

Evidence pipeline correctness

Governance authority boundaries

RPC finality semantics

Audit Targets Must-Fail Tests Deliverables

THIS SECTION IS BINDING FOR AUDITORS AND DEVELOPERS.

IMMEDIATE IMPLEMENTATION
— NEXT RUST COMMITS
The following commits are required before audit start:

1. Consensus/ finality enforcement

2. Extradata/ strict decoding + fuzz tests

3. Rpc/ finality-aware guardrails

4. Evidence/ deterministic detection

5. Networking/ handshake enforcement

No feature work beyond this list is permitted pre-audit.

SAFEONECHAIN —
EXTERNAL AUDIT
READINESS MAP
(DEVELOPER)

This map is normative.
Every protocol claim must be
traceable to code, tests, and on-chain
evidence.

Protocol Claim / Module / Artifact / Verifier
Deterministic Finality consensus / quorum logic offline
verifier
No Reorg of Final Blocks storage / block immutability
replay harness
CommitProof Correctness extradata / encode/decode
byte-level verifier
Validator Authority governance / system contracts
RPC + events
No Auto-Slashing evidence / governance gating
governance log
RPC Finality Safety rpc / guards RPC tests
Any change to one row requires re-audit.

TRACEABILITY MATRIX (CANONICAL)

LOCAL MULTI-
VALIDATOR HARNESS
(EXPANDED)
The harness is mandatory for audit and CI.
Canonical docker-compose
Version: “3.9”
Services:
 Validator1:
 Image: safo/rusk:latest
 Environment:
 - ROLE=validator
 - VALIDATOR_ID=0x01
 Validator2:
 Image: safo/rusk:latest
 Environment:
 - ROLE=validator
 - VALIDATOR_ID=0x02

Validator3:
 Image: safo/rusk:latest
 Environment:
 - ROLE=validator
 - VALIDATOR_ID=0x03

 Validator4:
 Image: safo/rusk:latest
 Environment:
 - ROLE=validator
 - VALIDATOR_ID=0x04

 Fullnode:
 Image: safo/rusk:latest
 Environment:
- ROLE=full

 Auditor:
 Image: safo/rusk:latest
 Environment:
- ROLE=auditor

REQUIRED TEST SCENARIOS
The harness must reproduce:

1. Normal finality (3 of 4 validators)

2. Proposer failure

3. Double-sign evidence generation

4. Network partition (2/2 split → no finality)

5. Governance-approved validator pause

Failure to reproduce invalidates compliance.

DETERMINISTIC
TEST VECTORS

Given:

Header hash H
Round R
Validator set hash V

Expected:

Deterministic CommitProof bytes

Identical across all implementations

COMMITPROOF VECTOR

Given:
Two conflicting precommit votes
Same validator
Same height
Expected:
Identical evidence object hash
Governance-processable

EVIDENCE VECTOR

FUZZING
STRATEGY
(MANDATORY)

Targets:
Malformed MAGIC
Wrong VERSION
Truncated signatures
Duplicate validator IDs
Incorrect SIG_COUNT
All must be rejected before consensus
impact.

COMMITPROOF FUZZING
Targets:
Non-final block queries
Invalid parameter types
Large payloads
Replayed requests
RPC must:
Reject explicitly
Never return non-final state

RPC FUZZING

SECURITY INVARIANTS
(DEVELOPER-ENFORCED)
The following invariants are checked in code:

1. A finalized block cannot be overwritten

2. A validator cannot precommit twice at the same height

3. Governance cannot modify finalized state

4. Emergency actions cannot bypass consensus

5. RPC cannot expose unfinalized truth

Violating any invariant is a consensus bug.

FINAL CODE FREEZE V1.0
(DEVELOPER)
At this point:

Consensus rules are frozen

CommitProof v1 encoding is frozen

System contracts v1 are frozen

RPC semantics are frozen

Harness scenarios are frozen

No breaking change is allowed without:
Protocol version bump
Full re-audit

AUDIT KICKOFF MARKER
(DEVELOPER)
This document marks the official audit baseline.

Auditors receive:

This DPS document

The MPF document

Reference client commit hash

Harness configuration

Anything outside these inputs is out of scope.

FINAL DEVELOPER STATEMENT
➢ Any client, node, or service claiming SafeOneChain
compatibility must conform exactly to this specification.
Deviations are detectable, auditable, and non-compliant by
definition.

END OF DEVELOPER PROTOCOL SPECIFICATION (DPS-V1.0)

CONTACT US

X

Telegram

Medium

safeonechain.com

https://twitter.com/SafeOne_Chain
https://t.me/SafeOne_Chain_Global
https://medium.com/@safeonechain
https://safeonechain.com/

