—
_I
O
=
LL
—
O
LLI
0
)

%)
o
F

FRAREY JAES
ANNNE (AREREW
EaR

i, T
17111 e
e

A P
G e ok
; (L A7

are

v1.0

DPS-
Canon

Version

e > P
7 H T
whnﬁlﬁhwﬂ R
127 =

77

o ' il 7
Y s e
7 :

ety

ical Implementation

Status

TR L ERLE S R Ty
—
ANEHLLMLUTIA NN LA AR R LRELE LR L
CREulunusLuLR R

L O R

Reference
Code Status
Audit Status

Audience

L= L

A A VRS S R TN

T R B W)
LARAERnE’
WERURW
LAY

O

Code Freeze vl
External Aud
Core Developers

Engineers, Auditors,

SO

AN
mu Ty

W)
A A LAY

R

S
3

ickoff
Protocol

tK
Node Operators

MR AR "

& % (SERRENMVRRRRRRIRRR |

R VAL B IR RN SR

S RAEUEREHIENE AT R MR NEEEES o

PURPOSE OF THIS DOGUMENT (DEVELOPER)

patiright;

39 This document defines how SafeOneChain is implemented.
php" title="Close">< If there is a conflict between:
- Interpretation
- blog posts

- marketing material

- secondary summaries

this document wins.

Any implementation claiming SAFO compatibility must
conform exactly to this specification.

REPOSITORY LAYOUT
(NORMATIVE)

rusk/

consensus/ # POA-BFT state machine
extradata/ # CommitProof encoding/decoding
execution/ # EVM integration
networking/ # Permissioned P2P
rpc/ # JSON-RPC (eth_* + safo_*)
——— governance/ # System contract bindings
evidence/ # Evidence detection & verification
storage/ # Block & state persistence
node/ # Node lifecycle
config/ # Genesis & validator config

— bin/ # Node binary
No module may bypass another module’s authority.

:!I>

) php" title="Close"»< // consensus/constants.rs

OuU
OuU
OuU
OuU
OuU
OuU
OuU

0 const COMMIT_QUORUM_NUMERATOR: u64 = 2;

0 const COMMIT_QUORUM_DENOMINATOR: ué4 = 3;
0 const EXTRA_DATA_MAGIC: [u8;4] = *b"SAFQO"

0 const EXTRA_DATA_VERSION_VI1: u8 = Ox01;

0 const MAX_VALIDATORS: usize = 100;

0 const SIGNATURE_SIZE: usize = 65;

0 const VALIDATOR_ID_SIZE: usize = 20;

These constants are protocol-critical.Changing them
requires a new protocol version and re-audit.

State Definitions Consensus Context

// consensus/state.rs // consensus/context.rs

pub enum ConsensusStep { pub struct ConsensusContext {
Propose, pub height: uc4,

Prevote, pub round: u32,

Precommit, pub step: ConsensusStep,
Commit, pub proposer: ValidatorId,

} pub votes: VoteSet,

Only one state may be active per block }

height.

// consensus/quorum.rs
pub fn has_commit_quorum(
votes: &Vec<Vote>,

Commit Condition validator_count: usize,
(Normative) == el
votes.len() >= (validator_count*2/3) +1
}

If this returns true, the block must be finalized.

Vote Structure

// consensus/vote.rs

pub struct Vote {

pub height: u4,

pub round: u32,

pub block_hash: Option<Hash>,

pub validator: ValidatorId,

pub signature: Signature,

}

A validator may never emit two
Precommit votes for the same height.

Raw Binary Layout (Exact)

| 0.4 | MAGIC = "SAFOQ" |
4| VERSION = OxO1 |
5.9 | ROUND (u32, BE) |

41.43 | SIG_COUNT (ule, BE) |
43.% | SIGNATURE ENTRIES |
Each signature entry:

| VALIDATOR_ID (20 bytes) |
SIGNATURE (65 bytes) |

9.41 | VALSET_HASH (32 bytes) |

Encoding

/I extradata/encode.rs

pub fn encode_commit_proof(

round: u32,

valset_hash: [u8; 32],

signatures: Vec<(ValidatorId,
Signature)>

) —> Vec<u8>{

let mut out = Vec:new();
outextend_from_slice(&EXTRA_DATA
_MAGIC);
outpush(EXTRA_DATA_VERSION_V1);
out.extend_from_slice(&round.to_be_b
ytes());
out.extend_from_slice(&valset_hash);
outextend_from_slice(&
(signhatures.len() as ule).to_be_bytes());

Verification

/l extradata/verify.rs

pub fn verify_commit_proof(
header_hash_no_extradata: Hash,
proof: CommitProof,
validator_set: &ValidatorSet

) —> Result<(), Error> {
ensure!(proof.signatures.len() >=
quorum(validator_set.len()));

for (id, sig) in proof.signatures {
let pubkey =
validator_set.get_pubkey(&id)?;
verify_secp256kl(header_hash_no_extrad
ata, sig, pubkey)?;

}

Ok(())

}

- - -
. -
= -
oy -
-
-
- . -
h - L ;
> ’,
s s ¢ / Z *
e
(- -
1 =~
e —
K-- =
i -
e — Y \
= = - 1
” 1 = "
= — = i
-
'_L_';»—'" ., >
-
= >,
2
- — -
'
-
»
I ;
- e ¥
N
r el
. .

> L b 4 ;- $ - "
EVIDENCE STRUCTURE THE REFERENCE CLIENT IS:

// evidence/types.rs // evidence/detect.rs

pub struct DoubleSignEvidence { pub fn detect_double_sign(votes: &[Vote])
oub validator: ValidatorId, -> Vec<DoubleSignEvidences {
oub height: ue4, /I group by validator + height
oub vote_a: Vote, }
oub vote_b: Vote, Evidence is never auto-enforced.

}

event Va
event Va
event Va

SYSIEM
CONTRAGTS V1
(SOLIDITY)

VALIDATORREGISTRY.SOL

contract ValidatorRegistry {

[
[

IC

atorAdded(address validator);
atorPaused(address validator);

atorRemoved(address validator);

mapping(address => bool) public active;
function addValidator(address v) external
onlyGovernance {

active[v] = true;

emit ValidatorAdded(v);

}
}

AINANCECONTROLLER.SOL

contract GovernanceController {
uint256 public quorum;

function approve(bytes32 action) external

onlyValidator {
/I quorum tracking

}
}

No contract has a single-admin escape
hatch.

RUST <> SOLIDITY BINDINGS

/I governance/bindings.rs

abigen!(
ValidatorRegistry,
"abi/ValidatorRegistry.json”

)

Bindings are:

- static

- versioned

- compile-time checked

LOGAL MULTI-VALIDATOR
HARNESS (DOGKER-GOMPOSE)

a i
:
php" title="Close">< version:"3.9"
SEerviCes:
\Vak

image: safo/rusk
environment:

- VALIDATOR_ID=1

V2.
image: safo/rusk
environment:

- VALIDATOR_ID=2
The harness must reproduce:
- quorum finality
- proposer failure
double-sign evidence

SAF0_* RPG METHODS
(EXAMPLES)

safo_getFinalityProof

{
"isonrpc™ "2.0",
"method". "safo_getFinalityProof",
"narams": ["OXxBLOCKHASH"],
"id" 1

}

Response includes:

- raw commit proof bytes

- validator set hash

verification status

" Fun'rpa r@m 3 h d .

JIma g
fayl- CIn 5

111 l I 1:2 i-=,‘I1'.é a!."-qm] Il i‘“ “gnii 5mI 't] i
l e W S ,||" ’"’i. ll’l.l-: .I: L l’ﬂl |
| MY Mmgem ol i
' lf l]-...41 J«.} |] JL Ilj.llll Ty ”l::,li"l ll:llhlli Llll Llil:l1|i| i‘-'_"i] : “ o n E o I
il N, gt f T e

- :”:h

Loat: left;" < >< (n Ev E I.o P E n)

patiright; margin-i

Y
"
: °

MR SRR . validators must use remote signers
- Keys are rotatable
- upgrades require governance approval

DST['saww“]))

L AT .- 4

= login"

« i: - %
hocitl | J 1] 8 -|-II‘l LTI I"Ii-
l I |1.-.I' -L..l]' I]' ‘1| il-.'ll Wit |I|II", llill |Ii l|l LUILI i g
W Wl g

NETWORKING STAGK

: :”l.:h

Loat: lef te " S
patiright; margin

s N
:
php" title="Close"><

SafeOneChain networking is permissioned, identity-bound,
and role-aware.

There is no peer discovery.
All peers are explicitly configured or admitted via

governance.

“Pa f'e ahd“]

M

.m geﬁ Utton

ldef
d‘ ages,

NODE IDENTITY

Each node has:

Pub struct NodelIdentity {

Pub node_id: [u8; 32],

Pub validator_id: Option<ValidatorId>,
Pub role: NodeRole,

Pub enum NodeRole {

Validator,

FullNode,

Auditor,

}

Validator - consensus + gossip
FullNode - sync + RPC

Auditor - read-only verification

......

HANDSHAKE PROTOGOL

Hifl! JJ.,,.K'I]

fae ’/ ”I!ITJQEB tOn ldef Handshake must complete before any data exchange.
YRR ;.w!!ﬂ?iﬁ
I I "Qeau Handshake steps:

-mf

e IM”;;;;;{]”],”FB v 4. Validator authorization check (if applicable)
‘3”'7*’-% ute,

ll ”HH"{J’;‘F U]
W F 5. Connection acceptance or rejection

Moty . .
ane="1logipn
Ngroun

i'“’l. T
W=Coln ¥

L >
loat:left:" se
patiright; margin

:] >
php" title="Close"><

Message

Validator Full Node Auditor
Type

"1:.;:_1' < l I

Propose v X X

"ESS"GE Prevote v X X
AUTHORIZATION Precommit v X 2
MATRIK o

Evidence v v v

RPC Relay X v i

SENDING UNAUTHORIZED MESSAGES IS A PROTOGOL VIOLATION.

NETWORK SEGURITY

Prepare -
M . _‘ahd“
] o0 m .

fault;

ol

ldef

"29eButtop
le, : Imageﬂu All messages signed

1t Img
:Wmm

8.

i

ata‘st.

All messages validated before processing
Rate limits per peer

-~ Malformed messages - immediate disconnect

THIS SECTION DEFINES ALL RPC SEMANTICS. RPC IS FINALITY-AWARE BY DESIGN.

Global Rules

Latest always means finalized

No RPC may expose non-final state as
canonical

Errors are explicit; silence is forbidden

Ethereum-Compatible
RPC (eth_*)

Supported subset:

Eth_blockNumber
Eth_getBlockByHash
Eth_getBlockByNumber
Eth_getTransactionByHash
Eth_getBalance

Eth_call

Constraint:
All calls resolve against finalized state
only.

SAFO-Specific RPC

(safo_%*)
Safo_getFinalityProof

Returns raw commit proof.

{

“params™ [“OXxBLOCKHASH"]
}

Response:

{

“finalized™ true,

}

THIS SECTION DEFINES ALL RPC SEMANTICS. RPC IS FINALITY-AWARE BY DESIGN.

Safo_getValidatorSet

{

“params™ [123456 |
}

Returns:
Ordered validator list
Public keys

Activation status

Safo_getGovernance
Actions

Returns full governance history slice.

Safo_getEvidence

Returns submitted evidence objects
including verification result.

RPC Error Semantics

{
“code™ -32001,

}

Errors are machine-processable.

Execution Model

SafeOneChain integrates an EVM
execution engine as a pure execution
layer.

Properties:

Execution cannot influence consensus

Execution failures cannot affect finality

Gas accounting is deterministic

Integration Boundary

Pub trait ExecutionEngine {
Fn execute_block(

&self,

Block: &Block,

State: &mut State

) —> ExecutionResult;

}

Consensus:

Validates signatures

Finalizes blocks
Execution:

Processes transactions

Produces state root

Contract Deployment
Policy

Deployment may be:
Open
Permissioned

This is a governance parameter, not a
protocol constant.

Purpose

Auditor nodes enable:

Independent finality verification
Governance timeline reconstruction
Evidence validation

Auditor nodes never sign and never
broadcast transactions.

Configuration

[node]

Role = “auditor”
Rpc_enabled = true
P2p_enabled = true
Signhing_disabled = true

Auditor Guarantees

An auditor node can:

Verify commit proofs offline

Detect equivocation

Validate governance decisions

Without trusting operators.

THIS SECTION IS BINDING FOR AUDITORS AND DEVELOPERS.

Audit Targets

Auditors must assess:

PoA-BFT safety invariants

CommitProof correctness

Evidence pipeline correctness

Governance authority boundaries

RPC finality semantics

Must-Fail Tests

Auditors must confirm failure for:
Forged commit proofs

Duplicate validator signatures
Governance actions without quorum

Non-final blocks returned as latest

Passing these tests is mandatory.

Deliverables

Written report
Reproducible PoCs
Severity classification

Explicit yes/no on finality bypass

.::.j ”_”E; § L 4
Ii]ii'ii i -

e |(VIIVIEDIATE IMIPLEMERTATION

J{qu!ﬁ:dmn: tﬁt[-

I;i
il

Seaeevmges — NENT RUST COMIVIETS

«Ima g |
" i " eBut]
faultIngge OM=1det
' " " ; IMageBu The following commits are required before audit start:

atau
a1 1 Consensus/ finality enforcement

Sition

T
Hflt gt

- .
r =
snFEONEc“nI“ . " - .". | . . : ‘.'.'-’ i
:Protocol CI im I odule I-At t‘ erlfler
verlfler o i y -

No Reorg of Final Blocks storage / block immutability

. " T~ i b 5
P g . | ‘. .
<y aman8d B L = &
¥ s T ‘1
/ L ¥ -;\ ““‘o
| Bys b .
i | 2 y -
= ;_J}f-.) g
AT - 2
i N S
-4 Ty N §

.I’
~.f,
'y

1y

) " e

This map is normative. replay harness
Every protocol claim must be CommitProof Correctness extradata / encode/decode
traceable to code, tests, and on-chain byte-level verifier

Validator Authority governance / system contracts
RPC + events

No Auto-Slashing evidence / governance gating
governance log

RPC Finality Safety rpc / guards RPC tests

Any change to one row requires re-audit.

evidence.

LOGAL MULII-

VALIDATOR HARNESS
(EXPANDED)

Canonical docker-compose
Version: “3.9”
&35& Serv_ices:
e Validatorl:
pa,- Image: safo/rusk:latest
Environment:
- ROLE=validator
- VALIDATOR_ID=0x01
Validator?2:
Image: safo/rusk:latest
Environment:
- ROLE=validator
- VALIDATOR_ID=0x02

The harness is mandatory for audit and CI.

Validator3:
Image: safo/rusk:latest
Environment:
- ROLE-=validator
- VALIDATOR_ID=0x035

Validator4:
Image: safo/rusk:latest
Environment:
- ROLE-=validator
- VALIDATOR_ID=0x04

Fullnode:
Image: safo/rusk:latest
Environment:
- ROLE-=full

Auditor:
Image: safo/rusk:latest
Environment:

- ROLE=auditor

I ageBu

ata~
ans Sta 2. Proposer ftailure
ition

-r.-;f

Failure to reproduce invalidates compliance.

DETERMINISTIC
TEST VEGTORS

COMMITPROOF VECTOR

Given:

Header hash H
Round R

Validator set hash V
Expected:

Deterministic CommitProof bytes

Identical across all implementations

EVIDENCE VECTOR
Given:
Two conflicting precommit votes
Same validator
Same height
Expected:

Identical evidence object hash
Governance-processable

FUZZING
SIRATEGY
(MANDATORY)

COMMITPROOF FUZZING

Targets:

Maltormed MAGIC
Wrong VERSION
Truncated sighatures
Duplicate validator IDs
Incorrect SIG_COUNT

All must be rejected before consensus
Impact.

Targets:

Non-final block queries
Invalid parameter types
_arge payloads

Replayed requests

RPC must:

Reject explicitly

Never return non-final state

SEGURITY INVARIANTS

Hi Wil IF'(-... N if .,y
i ll..,r' fi '}

J
" a
1

Imag
Inagep
faulty,

;{/ Iu.!ﬁ:c}]mﬁ:tatp |
Seaeevmges (UEVELOPER-ENFORGED)
t d ‘

The following invariants are checked in code:

1. A finalized block cannot be overwritten

5. RPC cannot expose unfinalized truth

| Violating any invariant is a consensus bug.

L T

- \‘| §] l‘l [n'

."". L e "'."] i i],-': .i""l. .o
i I Lr-‘r j«..lil' i | l.l..||l T |I||m| llillnllli llIl' Llilni: | - -
LR T

e [INAL CODE FREEZE V1.0
SRR ()E|/CL0PER)

oat:r lg nt v Margin
: (K] >
.php" title="Close">

L | .:
e

At this point:

Consensus rules are frozen
CommitProof vl encoding is frozen
System contracts vl are frozen

RPC semantics are frozen

Harness scenarios are frozen

No breaking change is allowed without:

Protocol version bump
Full re-audit

I 2 1 a,“ &y i1 PR
Ale="logip"

. ;> '
L0at: left:" »¢ (n Ev E ln P E n)

: (K] >
.php" title="Close">

I.‘.l' Lt & I".I.] H i 8 'rlljl. LT i
i I Lr-‘r j«..lil' i] il l.l..||l e |I||m| llillnllli llIl' Llilllulj: | - "
Pl b’ | g 4N

L |
e

This document marks the official audit baseline.
Auditors receive:

This DPS document

The MPF document

Reference client commit hash

Harness configuration

Anything outside these inputs is out of scope.

FINAL DEVELOPER STATEMENT

> Any client, node, or service claiming SafeOneChain
compatibility must conform exactly to this specification.
Deviations are detectable, auditable, and non-compliant by
definition.

. : !
i - : il i
LA s ¥
B g st ! T
W § 3 o
e li-"'.'.:"‘f' ol
L AL i
? M T
il 1
i ity '{I' it
oftll LT
ll fh 1
MR My
Hlt "
® i |
* |
f
I
i ol |
!

Medium

1>

Telegram safeonechain.com

https://twitter.com/SafeOne_Chain
https://t.me/SafeOne_Chain_Global
https://medium.com/@safeonechain
https://safeonechain.com/

